Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.4 - Integration of Rational Functions by Partial Fractions. - 7.4 Exercises - Page 516: 61

Answer

$\frac{1}{2}\ln \left| {\frac{{x - 2}}{x}} \right| + C$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{{x^2} - 2x}}}dx \cr & {\text{Completing the square}} \cr & \int {\frac{{dx}}{{{x^2} - 2x}}} dx = \int {\frac{{dx}}{{{x^2} - 2x + 1 - 1}}} \cr & = \int {\frac{{dx}}{{{{\left( {x - 1} \right)}^2} - 1}}}dx \cr & {\text{Using the formula 6: }}\int {\frac{{dx}}{{{x^2} - {a^2}}}} = \frac{1}{{2a}}\ln \left| {\frac{{x - a}}{{x + a}}} \right| + C \cr & \int {\frac{{dx}}{{{{\left( {x - 1} \right)}^2} - 1}}} = \frac{1}{{2\left( 1 \right)}}\ln \left| {\frac{{\left( {x - 1} \right) - 1}}{{\left( {x - 1} \right) + 1}}} \right| + C \cr & {\text{Simplifying}} \cr & \int {\frac{{dx}}{{{x^2} - 2x}}} = \frac{1}{2}\ln \left| {\frac{{x - 2}}{x}} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.