Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.1 - Integration by Parts - 7.1 Exercises - Page 491: 44

Answer

$x\displaystyle \cos(\ln x)+\frac{1}{2}x\sin(\ln x)+C$

Work Step by Step

Substitute: $\left[\begin{array}{ll} t=\ln x & x=e^{t}\\ dt=\frac{dx}{x} & dx=e^{t}dt \end{array}\right]$ $I=\displaystyle \int\cos(\ln x)=\int e^{t}\cos tdt$ This is very similar to the integral solved in example4. Take $\displaystyle \left[\begin{array}{ll} u=\cos t & dv=e^{t}dt\\ & \\ du=-\sin tdt & v=e^{t} \end{array}\right] \qquad\int udv=uv-\int vdu,$ $I=e^{t}\displaystyle \cos t+\int e^{t}\sin tdt$ By parts, again $\left[\begin{array}{ll} u=\sin t & dv=e^{t}dt\\ & \\ du=-\cos tdt & v=e^{t} \end{array}\right]$ $I_{1}=\displaystyle \int e^{t}\sin tdt=e^{t}\sin t+\int-e^{t}\cos tdt$ $I_{1}=e^{t}\sin t-I_{1}$ $2I_{1}=e^{t}\sin t$ $I_{1}=\displaystyle \frac{e^{t}\sin t}{2}$ $I=e^{t}\displaystyle \cos t+\frac{e^{t}\sin t}{2}+C$ ...bring back the variable x...$(t=\ln x)$ $I=x\displaystyle \cos(\ln x)+\frac{1}{2}x\sin(\ln x)+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.