Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.1 - Integration by Parts - 7.1 Exercises - Page 491: 27

Answer

$\frac{1}{3}{x^2}{e^{3x}} - \frac{2}{9}x{e^{3x}} + \frac{{11}}{{27}}{e^{3x}} + C$

Work Step by Step

$$\eqalign{ & \int {\left( {1 + {x^2}} \right)} {e^{3x}}dx \cr & \cr & {\text{Integrate by parts}} \cr & {\text{Let }}u = 1 + {x^2},{\text{ }}du = 2xdx \cr & dv = {e^{3x}}dx,{\text{ }}v = \frac{1}{3}{e^{3x}} \cr & {\text{Using the integration by parts formula}} \cr & \int {udv} = uv - \int {vdu} \cr & \int {\left( {1 + {x^2}} \right)} {e^{3x}}dx = \left( {1 + {x^2}} \right)\left( {\frac{1}{3}{e^{3x}}} \right) - \int {\left( {\frac{1}{3}{e^{3x}}} \right)} \left( {2x} \right)dx \cr & \int {\left( {1 + {x^2}} \right)} {e^{3x}}dx = \frac{1}{3}\left( {1 + {x^2}} \right){e^{3x}} - \frac{2}{3}\int {x{e^{3x}}} dx \cr & \cr & {\text{Integate by parts again}} \cr & {\text{Let }}u = x,{\text{ }}du = dx \cr & dv = {e^{3x}}dx,{\text{ }}v = \frac{1}{3}{e^{3x}} \cr & \int {\left( {1 + {x^2}} \right)} {e^{3x}}dx = \frac{1}{3}\left( {1 + {x^2}} \right){e^{3x}} - \frac{2}{3}\left( {x\left( {\frac{1}{3}{e^{3x}}} \right) - \int {\frac{1}{3}{e^{3x}}dx} } \right) \cr & {\text{Multiply}} \cr & \int {\left( {1 + {x^2}} \right)} {e^{3x}}dx = \frac{1}{3}{e^{3x}} + \frac{1}{3}{x^2}{e^{3x}} - \frac{2}{9}x{e^{3x}} + \frac{2}{9}\int {{e^{3x}}dx} \cr & {\text{Integrate and simplify}} \cr & \int {\left( {1 + {x^2}} \right)} {e^{3x}}dx = \frac{1}{3}{e^{3x}} + \frac{1}{3}{x^2}{e^{3x}} - \frac{2}{9}x{e^{3x}} + \frac{2}{9}\left( {\frac{1}{3}{e^{3x}}} \right) + C \cr & \int {\left( {1 + {x^2}} \right)} {e^{3x}}dx = \frac{1}{3}{x^2}{e^{3x}} + \frac{1}{3}{e^{3x}} - \frac{2}{9}x{e^{3x}} + \frac{2}{{27}}{e^{3x}} + C \cr & \int {\left( {1 + {x^2}} \right)} {e^{3x}}dx = \frac{1}{3}{x^2}{e^{3x}} - \frac{2}{9}x{e^{3x}} + \frac{{11}}{{27}}{e^{3x}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.