Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Review - Exercises - Page 553: 17

Answer

$$\frac{1}{3}x^3{ {{{\tan }^{ - 1}}x}}{} - \frac{{{x^2}}}{6} + \frac{1}{6}\ln \left( {{x^2} + 1} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {{x^2}{{\tan }^{ - 1}}x} dx \cr & {\text{Integrating by parts}}{\text{, }} \cr & {\text{Let }}u = {\tan ^{ - 1}}x,{\text{ }}du = \frac{1}{{1 + {x^2}}}dx \cr & {\text{ }}dv = {x^2}dx,{\text{ }}v = \frac{1}{3}{x^3} \cr & {\text{Using integration by parts formula}} \cr & \int u dv = uv - \int {vdu} \cr & \int {{x^2}{{\tan }^{ - 1}}x} dx = { {{{\tan }^{ - 1}}x} }\left( {\frac{1}{3}{x^3}} \right) - \int {\left( {\frac{1}{3}{x^3}} \right)\left( {\frac{1}{{1 + {x^2}}}} \right)} dx \cr & {\text{Multiply}} \cr & \int {{x^2}{{\tan }^{ - 1}}x} dx = \frac{1}{3}{ {{{x^3\tan }^{ - 1}}x} }{} - \frac{1}{3}\int {\frac{{{x^3}}}{{{x^2} + 1}}} dx \cr & {\text{Using the long division}} \cr & = \frac{1}{3}{x^3 {{{\tan }^{ - 1}}x} }{} - \frac{1}{3}\int {\left( {x - \frac{x}{{{x^2} + 1}}} \right)} dx \cr & = \frac{1}{3}{x^3 {{{\tan }^{ - 1}}x} }{} - \frac{1}{3}\int x dx + \frac{1}{3}\int {\frac{x}{{{x^2} + 1}}} dx \cr & {\text{Integrate}} \cr & = \frac{1}{3}{x^3 {{{\tan }^{ - 1}}x} }{} - \frac{1}{3}\left( {\frac{{{x^2}}}{2}} \right) + \frac{1}{3}\int {\frac{x}{{{x^2} + 1}}} dx \cr & = \frac{1}{3}{x^3 {{{\tan }^{ - 1}}x} }{} - \frac{{{x^2}}}{6} + \frac{1}{6}\ln \left( {{x^2} + 1} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.