Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Review - Exercises - Page 553: 11

Answer

$\frac{1}{2}{x^2}{\ln ^2}x - \frac{1}{2}{x^2}\ln x + \frac{1}{4}{x^2} + C$

Work Step by Step

$$\eqalign{ & \int x {\left( {\ln x} \right)^2}dx \cr & {\text{Integrating by parts}}{\text{, }} \cr & {\text{Let }}u = {\left( {\ln x} \right)^2},{\text{ }}du = 2\left( {\ln x} \right)\left( {\frac{1}{x}} \right)dx \cr & {\text{ }}dv = xdx,{\text{ }}v = \frac{1}{2}{x^2} \cr & {\text{Using integration by parts formula}} \cr & \int u dv = uv - \int {vdu} \cr & \int x {\left( {\ln x} \right)^2}dx = {\left( {\ln x} \right)^2}\left( {\frac{1}{2}{x^2}} \right) - \int {\left( {\frac{1}{2}{x^2}} \right)\left( 2 \right)} \left( {\ln x} \right)\left( {\frac{1}{x}} \right)dx \cr & {\text{Multiply}} \cr & \int x {\left( {\ln x} \right)^2}dx = \frac{1}{2}{x^2}{\ln ^2}x - \int {x\ln x} dx \cr & {\text{Integrating by parts again }} \cr & {\text{Let }}u = \ln x,{\text{ }}du = \frac{1}{x}dx \cr & {\text{ }}dv = xdx,{\text{ }}v = \frac{1}{2}{x^2} \cr & \int x {\left( {\ln x} \right)^2}dx = \frac{1}{2}{x^2}{\ln ^2}x - \left( {\frac{1}{2}{x^2}\ln x - \int {\left( {\frac{1}{2}{x^2}} \right)\left( {\frac{1}{x}} \right)dx} } \right) \cr & \int x {\left( {\ln x} \right)^2}dx = \frac{1}{2}{x^2}{\ln ^2}x - \frac{1}{2}{x^2}\ln x + \frac{1}{2}\int {xdx} \cr & {\text{Integrate}} \cr & \int x {\left( {\ln x} \right)^2}dx = \frac{1}{2}{x^2}{\ln ^2}x - \frac{1}{2}{x^2}\ln x + \frac{1}{2}\left( {\frac{{{x^2}}}{2}} \right) + C \cr & \int x {\left( {\ln x} \right)^2}dx = \frac{1}{2}{x^2}{\ln ^2}x - \frac{1}{2}{x^2}\ln x + \frac{1}{4}{x^2} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.