Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 6 - Section 6.2 - Volume - 6.2 Exercises - Page 456: 5

Answer

$V = \pi \int_1^3 {{{\ln }^2}x} dx$

Work Step by Step

$$\eqalign{ & y = \ln x,{\text{ }}y = 0,{\text{ }}x = 3;{\text{ about the }}x{\text{ - axis}} \cr & {\text{Graph of the region shown below }}\left( {{\text{Use Geogebra}}} \right) \cr & \cr & {\text{When we slice through the point }}x,{\text{ we get a disk with }} \cr & {\text{radius}}\ln x.{\text{ The area of this cross section is }}A = \pi {r^2}, \cr & {\text{Let }}r = \ln x,{\text{ then}} \cr & A\left( x \right) = \pi \underbrace {{{\left( {\ln x} \right)}^2}}_{{\text{radius}}} \cr & {\text{The solid lies on the interval }}1 \leqslant x \leqslant 3,{\text{ so using the volume}} \cr & {\text{definition }}\left( {{\text{page 448}}} \right) \cr & V = \int_a^b {A\left( x \right)} dx \cr & {\text{The volume is given by}} \cr & V = \int_1^3 {\pi {{\left( {\ln x} \right)}^2}} dx \cr & V = \pi \int_1^3 {{{\ln }^2}x} dx \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.