Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Section 5.1 - Areas and Distances - 5.1 Exercises - Page 383: 19

Answer

$A=\lim\limits_{n \to \infty}\sum_{i=1}^n\frac{4(1+\frac{4i}{n})\sqrt{(1+\frac{4i}{n})^3+8}}{n}$

Work Step by Step

Using the Definition 2 $A=\lim\limits_{n \to \infty}\sum_{i=1}^nf(x_i)\Delta x$ where $\Delta x=\frac{\text{upper bound - lower bound}}{n}$ Find $\Delta x$ and simplify: $\Delta x=\frac{5-1}{n}=\frac{4}{n}$ Then, $A=\lim\limits_{n \to \infty}\sum_{i=1}^nx_i\sqrt{x_i^3+8}\cdot \frac{4}{n}$ $A=\lim\limits_{n \to \infty}\sum_{i=1}^n\frac{4x_i\sqrt{x_i^3+8}}{n}$ where $x_i=1+\frac{4i}{n}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.