Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Section 5.1 - Areas and Distances - 5.1 Exercises - Page 383: 16

Answer

$A=\lim\limits_{n \to \infty}\sum_{i}^n\frac{4x_i^2e^{x_i}}{n}$

Work Step by Step

Using the Definition 2, $A=\lim\limits_{n \to \infty}\sum_{i=1}^nf(x_i)\Delta x$ where $\Delta x=\frac{upper\ bound\ -\ lower\ bound}{n}$ Find $\Delta x$ and simplify: $\Delta x=\frac{4-0}{n}=\frac{4}{n}$ Then, $A= \lim\limits_{n \to \infty}\sum_{i=1}^nx_i^2e^{x_i}\cdot \frac{4}{n}$ $A=\lim\limits_{n \to \infty}\sum_{i=1}^n\frac{4x_i^2e^{x_i}}{n}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.