Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 4 - Section 4.4 - Indeterminate Forms and l''Hospital''s Rule - 4.4 Exercises - Page 317: 80

Answer

(a) $\lim\limits_{t \to \infty}v = \frac{mg}{c}$ This limit is the terminal velocity of the object as it falls. (b) $\lim\limits_{c \to 0^+}v = gt$ The velocity of a falling object in a vacuum continues increasing as time passes.

Work Step by Step

(a) $\lim\limits_{t \to \infty}v$ $=\lim\limits_{t \to \infty}\frac{mg}{c}(1-e^{-ct/m})$ $=\lim\limits_{t \to \infty}\frac{mg}{c}(1-\frac{1}{e^{ct/m}})$ $=\frac{mg}{c}(1-0)$ $=\frac{mg}{c}$ This limit is the terminal velocity of the object as it falls. (b) $\lim\limits_{c \to 0^+}v$ $=\lim\limits_{c \to 0^+}\frac{mg}{c}(1-e^{-ct/m})$ $=\lim\limits_{c \to 0^+}\frac{mg-mge^{-ct/m}}{c} = \frac{0}{0}$ We can use L'Hospital's Rule: $\lim\limits_{c \to 0^+}\frac{mg-mge^{-ct/m}}{c}$ $=\lim\limits_{c \to 0^+}\frac{(-\frac{t}{m})(-mge^{-ct/m}~)}{1}$ $=\lim\limits_{c \to 0^+}(\frac{t}{m})(mge^{-ct/m})$ $=\lim\limits_{c \to 0^+}gt~e^{-ct/m}$ $=gt$ The velocity of a falling object in a vacuum continues increasing as time passes.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.