Answer
$1$
Work Step by Step
$$\eqalign{
& \mathop {\lim }\limits_{x \to {0^ + }} {\left( {1 - \cos x} \right)^{\sin x}} \cr
& {\text{Evaluating the limit}} \cr
& \mathop {\lim }\limits_{x \to {0^ + }} {\left( {1 - \cos \left( 0 \right)} \right)^{\sin 0}} = {\left( {1 - 1} \right)^0} = {0^0} \cr
& {\text{This limit has the form }}{0^0},{\text{ then}} \cr
& {\text{Let }}y = \mathop {\lim }\limits_{x \to {0^ + }} {\left( {1 - \cos x} \right)^{\sin x}} \cr
& {\text{Take natural log on both sides of the equation}} \cr
& \ln y = \ln \mathop {\lim }\limits_{x \to {0^ + }} {\left( {1 - \cos x} \right)^{\sin x}} \cr
& {\text{Using the continuity}} \cr
& \ln y = \mathop {\lim }\limits_{x \to {0^ + }} \left( {\ln {{\left( {1 - \cos x} \right)}^{\sin x}}} \right) \cr
& {\text{Use the power property of logarithms}} \cr
& \ln y = \mathop {\lim }\limits_{x \to {0^ + }} \left( {\sin x\ln \left( {1 - \cos x} \right)} \right) \cr
& {\text{Rewrite}} \cr
& \ln y = \mathop {\lim }\limits_{x \to {0^ + }} \left( {\frac{{\ln \left( {1 - \cos x} \right)}}{{\frac{1}{{\sin x}}}}} \right) \cr
& {\text{Evaluating}} \cr
& \ln y = \frac{\infty }{\infty } \cr
& {\text{Using the L'Hopital's rule}} \cr
& \ln y = \mathop {\lim }\limits_{x \to {0^ + }} \left[ {\frac{{\frac{d}{{dx}}\left[ {\ln \left( {1 - \cos x} \right)} \right]}}{{\frac{d}{{dx}}\left[ {\frac{1}{{\sin x}}} \right]}}} \right] \cr
& \ln y = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\frac{{\sin x}}{{1 - \cos x}}}}{{\frac{{\cos x}}{{{{\sin }^2}x}}}} \cr
& \ln y = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{{{\sin }^3}x}}{{\cos x\left( {1 - \cos x} \right)}} = \frac{0}{0} \cr
& {\text{Using the L'Hopital's rule}} \cr
& \ln y = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{3{{\sin }^2}x\cos x}}{{\cos x\left( {\sin x} \right) + \left( {1 - \cos x} \right)\sin x}} \cr
& \ln y = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{3\sin x\cos x}}{{\cos x + \left( {1 - \cos x} \right)}} \cr
& {\text{Evaluating the limit}} \cr
& \ln y = \frac{{3\left( 0 \right)}}{{1 - 0}} \cr
& \ln y = 0 \cr
& y = 1 \cr
& {\text{Therefore}} \cr
& \ln y = \mathop {\lim }\limits_{x \to {0^ + }} {\left( {1 - \cos x} \right)^{\sin x}} \cr
& \mathop {\lim }\limits_{x \to {0^ + }} {\left( {1 - \cos x} \right)^{\sin x}} = 1 \cr} $$