Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 4 - Section 4.4 - Indeterminate Forms and l''Hospital''s Rule - 4.4 Exercises - Page 316: 12

Answer

$\frac{1}{4}$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to 4} \frac{{\sqrt x - 2}}{{x - 4}} \cr & {\text{Use the quotient property of limits}} \cr & \mathop {\lim }\limits_{x \to 4} \frac{{\sqrt x - 2}}{{x - 4}} = \frac{{\mathop {\lim }\limits_{x \to 4} \left( {\sqrt x - 2} \right)}}{{\mathop {\lim }\limits_{x \to 4} \left( {x - 4} \right)}} \cr & = \frac{{\mathop {\lim }\limits_{x \to 4} \left( {\sqrt x } \right) - \mathop {\lim }\limits_{x \to 4} \left( 2 \right)}}{{\mathop {\lim }\limits_{x \to 4} \left( x \right) - \mathop {\lim }\limits_{x \to 4} \left( 4 \right)}} \cr & {\text{Evaluate the limit}} \cr & \frac{{\mathop {\lim }\limits_{x \to 4} \left( {\sqrt x } \right) - \mathop {\lim }\limits_{x \to 4} \left( 2 \right)}}{{\mathop {\lim }\limits_{x \to 4} \left( x \right) - \mathop {\lim }\limits_{x \to 4} \left( 4 \right)}} = \frac{{\sqrt 4 - 2}}{{4 - 4}}{\text{ = }}\frac{0}{0} \cr & {\text{The limit is an indeterminate form type }}\frac{0}{0},{\text{ so we can apply}} \cr & {\text{the L'Hospital's Rule}}{\text{.}} \cr & \mathop {\lim }\limits_{x \to 4} \frac{{\sqrt x - 2}}{{x - 4}} = \mathop {\lim }\limits_{x \to 4} \frac{{\frac{d}{{dx}}\left[ {\sqrt x - 2} \right]}}{{\frac{d}{{dx}}\left[ {x - 4} \right]}} \cr & = \mathop {\lim }\limits_{x \to 4} \frac{{\frac{1}{{2\sqrt x }}}}{1} \cr & = \frac{1}{2}\mathop {\lim }\limits_{x \to 4} \frac{1}{{\sqrt x }} \cr & {\text{Evaluate the limit when }}x \to 4 \cr & = \frac{1}{2}\left( {\frac{1}{{\sqrt 4 }}} \right) \cr & = \frac{1}{4} \cr & {\text{Therefore}}{\text{,}} \cr & \mathop {\lim }\limits_{x \to 4} \frac{{\sqrt x - 2}}{{x - 4}} = \frac{1}{4} \cr} $$ Another method Factor the denominator as $(\sqrt x-2)(\sqrt x+2)$, then simplify.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.