Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 4 - Section 4.4 - Indeterminate Forms and l''Hospital''s Rule - 4.4 Exercises - Page 316: 11

Answer

$\frac{7}{3}$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to 1} \frac{{{x^7} - 1}}{{{x^3} - 1}} \cr & {\text{Use the quotient property of limits}} \cr & \mathop {\lim }\limits_{x \to 1} \frac{{{x^7} - 1}}{{{x^3} - 1}} = \frac{{\mathop {\lim }\limits_{x \to 1} \left( {{x^7} - 1} \right)}}{{\mathop {\lim }\limits_{x \to 1} \left( {{x^3} - 1} \right)}} \cr & = \frac{{\mathop {\lim }\limits_{x \to 1} \left( {{x^7}} \right) - \mathop {\lim }\limits_{x \to 1} \left( 1 \right)}}{{\mathop {\lim }\limits_{x \to 1} \left( {{x^3}} \right) - \mathop {\lim }\limits_{x \to 1} \left( 1 \right)}} \cr & {\text{Evaluate the limit}} \cr & \frac{{\mathop {\lim }\limits_{x \to 1} \left( {{x^7}} \right) - \mathop {\lim }\limits_{x \to 1} \left( 1 \right)}}{{\mathop {\lim }\limits_{x \to 1} \left( {{x^3}} \right) - \mathop {\lim }\limits_{x \to 1} \left( 1 \right)}} = \frac{{{{\left( 1 \right)}^7} - 1}}{{{{\left( 1 \right)}^3} - 1}}{\text{ = }}\frac{0}{0} \cr & {\text{The limit is an indeterminate form type }}\frac{0}{0},{\text{ so we can apply}} \cr & {\text{the L'Hospital's Rule}}{\text{.}} \cr & \mathop {\lim }\limits_{x \to 1} \frac{{{x^7} - 1}}{{{x^3} - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\frac{d}{{dx}}\left[ {{x^7} - 1} \right]}}{{\frac{d}{{dx}}\left[ {{x^3} - 1} \right]}} \cr & = \mathop {\lim }\limits_{x \to 1} \frac{{7{x^6}}}{{3{x^2}}} \cr & = \mathop {\lim }\limits_{x \to 1} \frac{{7{x^4}}}{3} \cr & {\text{Evaluate the limit when }}x \to 1 \cr & = \frac{{7{{\left( 1 \right)}^4}}}{3} \cr & = \frac{7}{3} \cr & {\text{Therefore}}{\text{,}} \cr & \mathop {\lim }\limits_{x \to 1} \frac{{{x^7} - 1}}{{{x^3} - 1}} = \frac{7}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.