Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 4 - Review - Exercises - Page 365: 9

Answer

$\lim\limits_{x \to 0}\frac{e^{2x}-e^{-2x}}{ln(x+1)} = 4$

Work Step by Step

$\lim\limits_{x \to 0}\frac{e^{2x}-e^{-2x}}{ln(x+1)} = \frac{0}{0}$ We can use L'Hospital's Rule: $\lim\limits_{x \to 0}\frac{e^{2x}-e^{-2x}}{ln(x+1)}$ $=\lim\limits_{x \to 0}\frac{2e^{2x}+2e^{-2x}}{1/(x+1)}$ $=\frac{2(1)+2(1)}{1}$ $= 4$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.