Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Review - Exercises - Page 169: 46

Answer

$f'(t)=\frac{-1}{2(t+1)\sqrt{t+1}}$ The domain of $f'$ is $(-1,\infty)$.

Work Step by Step

$f(t)=\frac{1}{\sqrt{t+1}}$ Use the definition of a derivative. $f'(t)=\lim\limits_{h \to 0}\frac{f(t+h)-f(t)}{h}$ $=\lim\limits_{h \to 0}\frac{\frac{1}{\sqrt{t+h+1}}-\frac{1}{\sqrt{t+1}}}{h}$ $=\lim\limits_{h \to 0}\frac{\frac{\sqrt{t+1}-\sqrt{t+h+1}}{\sqrt{t+h+1}\sqrt{t+1}}}{h}$ $=\lim\limits_{h \to 0}{\frac{\sqrt{t+1}-\sqrt{t+h+1}}{h\sqrt{t+h+1}\sqrt{t+1}}}$ $=\lim\limits_{h \to 0}{\frac{\sqrt{t+1}-\sqrt{t+h+1}}{h\sqrt{t+h+1}\sqrt{t+1}}}\times \frac{\sqrt{t+1}+\sqrt{t+h+1}}{\sqrt{t+1}+\sqrt{t+h+1}}$ $=\lim\limits_{h \to 0}\frac{t+1-(t+h+1)}{h\sqrt{t+h+1}\sqrt{t+1}(\sqrt{t+1}+\sqrt{t+h+1})}$ $=\lim\limits_{h \to 0}\frac{-h}{h\sqrt{t+h+1}\sqrt{t+1}(\sqrt{t+1}+\sqrt{t+h+1})}$ $=\lim\limits_{h \to 0}\frac{-1}{\sqrt{t+h+1}\sqrt{t+1}(\sqrt{t+1}+\sqrt{t+h+1})}$ $=\frac{-1}{\sqrt{t+0+1}\sqrt{t+1}(\sqrt{t+1}+\sqrt{t+0+1})}$ $=\frac{-1}{(t+1)\cdot 2\sqrt{t+1}}$ $=\frac{-1}{2(t+1)\sqrt{t+1}}$ Thus, $f'(t)=\frac{-1}{2(t+1)\sqrt{t+1}}$. The domain of $f'$ is $(-1,\infty)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.