Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Review - Exercises - Page 169: 45

Answer

$f'(x)=-\frac{4}{x^3}$ The domain of $f'$: $(-\infty,0)\cup(0,\infty)$.

Work Step by Step

Use the definition of a derivative. $f'(x)=\lim\limits_{h \to 0}\frac{f(x+h)-f(x)}{h}$ $=\lim\limits_{h \to 0}\frac{\frac{2}{(x+h)^2}-\frac{2}{x^2}}{h}$ $=\lim\limits_{h \to 0}\frac{\frac{2x^2-2(x+h)^2}{(x+h)^2x^2}}{h}$ $=\lim\limits_{h \to 0}\frac{\frac{2x^2-2x^2-4xh-2h^2}{(x+h)^2x^2}}{h}$ $=\lim\limits_{h \to 0}\frac{\frac{-4xh-2h^2}{(x(x+h))^2}}{h}$ $=\lim\limits_{h \to 0}\frac{h(-4x-2h)}{h(x(x+h))^2}$ $=\lim\limits_{h \to 0}\frac{-4x-2h}{(x(x+h))^2}$ $=\frac{-4x-2\cdot 0}{(x(x+0))^2}$ $=\frac{-4x}{x^4}$ $=\frac{-4}{x^3}$ Thus, $f'(x)=-\frac{4}{x^3}$. The domain of $f'$ is $(-\infty,0)\cup(0,\infty)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.