Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 16 - Section 16.5 - Curl and Divergence - 16.5 Exercise - Page 1169: 37

Answer

$\oint_C D_n g ds=0$

Work Step by Step

Consider the First Green Identity: $\oint_C F \cdot n ds=\iint_D div F(x,y) dA$ When $\nabla^2 g=0$ This implies that $\oint_C \nabla g \cdot n ds=0$ Since, $F=\nabla g$ $\oint_C \nabla g \cdot n ds=\iint_D div (\nabla g) dA$ or, $\oint_C \nabla g \cdot n ds=\iint_D \nabla \cdot (\nabla g) dA=\iint_D \nabla^2 g dA=\iint_D (0) dA=0$ As per the statement, $D_ng$ is defined as $\nabla g \cdot n$ This implies that $\oint_C D_n g ds=0$ (proved) Thus, the result is proved.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.