Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 16 - Section 16.5 - Curl and Divergence - 16.5 Exercise - Page 1169: 36

Answer

$\iint_D (f \nabla^2 g-g \nabla^2 f) dA=\oint_C (f\nabla g-g\nabla f) \cdot n ds$

Work Step by Step

$\iint_Df \nabla^2 g dA=\oint_C f(\nabla g) \cdot n ds-\iint_D \nabla f \cdot \nabla g dA$ ..(a) Replace $f$ with $g$ in the above equation (1). $\iint_D g \nabla^2 g dA=\oint_C g(\nabla f) \cdot n ds-\iint_D \nabla g \cdot \nabla f dA$ ..(b) On subtracting equation (b) from equation (a), we have $\iint_D (f \nabla^2 g-g \nabla^2 f) dA=\oint_C (f\nabla g-g\nabla f) \cdot n ds$ Hence, the result has been proved.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.