Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 16 - Section 16.2 - Line Integrals - 16.2 Exercise - Page 1143: 42

Answer

$\dfrac{7}{3}+\dfrac{e^2-e}{2}$

Work Step by Step

The work done is given by: $W=\int_C F\cdot dr=\int_0^{1} (y^2+1)^2(2y dy)+ye^{y^2+1} dy=\int_0^{1} 2y (y^2+1)^2+ye^{y^2+1} dy$ Suppose $y^2+1=p \implies 2y dy =dp$ Thus, we have $W=\int_C F\cdot dr=\int_1^2 p^2+\dfrac{e^p}{2} dp=[\dfrac{p^3}{3}+\dfrac{e^p}{2}]_1^{2}=[\dfrac{2^3}{3}+\dfrac{e^2}{2}]-[\dfrac{1^3}{3}+\dfrac{e^1}{2}]=\dfrac{7}{3}+\dfrac{e^2-e}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.