Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 16 - Section 16.2 - Line Integrals - 16.2 Exercise - Page 1143: 39

Answer

$I_x=k( \dfrac{\pi}{2}-\dfrac{4}{3}) $ and $I_y=k( \dfrac{\pi}{2}-\dfrac{2}{3}) $

Work Step by Step

$I_x=\int_0^{\pi} \sin ^2 t[k(1-\sin t)] dt=k\int_0^{\pi} (\sin ^2 t-\sin^3 t) dt =k\int_0^{\pi} (\dfrac{1-\cos 2t}{2})- k\int_0^{\pi}(\dfrac{3 \sin t-\sin 3t}{4}) dt=k( \dfrac{\pi}{2}-\dfrac{4}{3}) $ Now, we have $I_y=\int_0^{\pi} \cos ^2 t[k(1-\sin t)] dt=(k) \times \int_0^{\pi} (\cos^2 t-\cos^2 t \sin t) dt =(k) \times \int_0^{\pi} \dfrac{1+ \cos 2t}{2} dt+k\int_0^{\pi} [\dfrac{\cos^3 t}{3}]_0^{\pi} =k( \dfrac{\pi}{2}-\dfrac{2}{3}) $ Hence, we have $I_x=k( \dfrac{\pi}{2}-\dfrac{4}{3}) ; I_y=k( \dfrac{\pi}{2}-\dfrac{2}{3}) $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.