Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 15 - Section 15.2 - Double Integrals over General Regions - 15.2 Exercise - Page 1061: 72

Answer

$\dfrac{3(1-\sin 1)}{2}$

Work Step by Step

The average value of a function $f(x,y)$ over a region $D$ is given by: $f_{av}=\dfrac{1}{A} \iint_{D} f(x,y)\ dA$ and $D$ is the projection of the surface on the xy-plane. We can express the region $D$ using the point of intersection as follows: $$D=\left\{ (x, y) | 0 \leq y \leq x^2 , 0 \leq x \leq 1 \right\}$$ Now, $A=\iint_{D} f(x,y)\ dA=\int_0^1 \int_0^{x^2} \ dy \ dx\\=[\dfrac{x^3}{3}]_0^1 \\=\dfrac{1}{3}$ Next, $f_{av}=\dfrac{1}{A} \iint_{D} f(x,y)\ dA = 3 \int_0^1 \int_0^{x^2} x \sin y \ dy \ dx\\=3 \int_0^1 -x \cos (x^2) +x \ dx \\=\dfrac{3}{2} \int_0^1 [1-\cos (x^2) ] \times 2x \ dx $ Set $a=x^2 \implies 2x =da$ So, $f_{av}=\dfrac{3}{2} \int_0^1 (1-a) da \\=\dfrac{3}{2} [a-\sin a ]_0^1 \\=\dfrac{3(1-\sin 1)}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.