Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 15 - Section 15.2 - Double Integrals over General Regions - 15.2 Exercise - Page 1061: 65

Answer

$$ \dfrac{2 \sqrt 2-1}{3}$$

Work Step by Step

Consider $I=\int_{0}^{\pi/2} \int_{0}^{\sin x} \cos x \sqrt {1+\cos^2 x} dy \ dx$ or, $=\int_{0}^{\pi/2} y \cos x [ \sqrt {1+\cos^2 x} ]_{0}^{\sin x} \cos x \ dx$ or, $=\int_{0}^{\pi/2} \sin x \cos x \sqrt {1+\cos^2 x} \ dx$ Let us consider $1+\cos^2 x=a \implies da=-2 \cos x \sin x \ dx$ Now, $I=\int_{0}^{\pi/2} \sin x \cos x \sqrt {1+\cos^2 x} \ dx=-\dfrac{1}{2} \int_{2}^{1} \sqrt a da \\=\dfrac{1}{2} \int_{1}^{2} \sqrt a da \\=[\dfrac{a^{3/2}}{3}]_1^2 \\= \dfrac{2 \sqrt 2-1}{3}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.