Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 15 - Section 15.2 - Double Integrals over General Regions - 15.2 Exercise - Page 1060: 41

Answer

$$\approx 0.713$$

Work Step by Step

The volume under the surface $z=f(x,y)$ and above the region $D$ in the xy-plane can be defined as: $$\ Volume =\iint_{D} f(x,y) \ dA$$ Thus, we can express the region $D$ using the point of intersection as follows: $$D=\left\{ (x, y) | x^4 \leq y \leq 3x-x^2, \ 0 \leq x \leq 1.213 \right\} $$ Therefore, $$\ Volume =\iint_{D} f(x,y) \ dA \\= \int_{0}^{1.213} \int_{x^4}^{3x-x^2}x dy \ dx \\ = \int_{0}^{1.213} [xy]_{x^4}^{3x-x^2} \ dx \\= \int_{0}^{1.213} 3x^2-x^3-x^5 \ dx \\=[x^3 -\dfrac{x^4}{4}-\dfrac{x^6}{6}]_0^{1.213} \\ = (1.213)^3 -\dfrac{(1.213)^4}{4}-\dfrac{(1.213)^6}{6} \\ \approx 0.713$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.