Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 15 - Section 15.2 - Double Integrals over General Regions - 15.2 Exercise - Page 1060: 25

Answer

$\dfrac{11}{3}$

Work Step by Step

We can define the domain $D$ as follows: $ D=\left\{ (x, y) | 1 \leq y \leq 2, \ y-1 \leq x \leq -3y+7 \right\} $ Therefore, $\iint_{D} y^2 \ dA=\int_{1}^{2} \int_{y-1}^{-3y+7} y^2 \ dx \ dy \\ =\int_{1}^{2} [xy^2]_{y-1}^{-3y+7} \ dx \\= \int_1^2 (-4y^3+8y^2) \ dy \\= [\dfrac{-4y^4}{4} +\dfrac{8y^3}{3}]_1^2 \\= [-y^4+\dfrac{8y^3}{3}]_1^2 \\=-15+\dfrac{56}{3} \\=\dfrac{11}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.