Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 14 - Section 14.6 - Directional Derivatives and the Gradient Vector - 14.6 Exercise - Page 1007: 49

Answer

(a) $x+2y+6z=12$ (b) $(x-2)=\dfrac{(y-2)}{2}=\dfrac{(z-1)}{6}$

Work Step by Step

(a) Formula to calculate tangent plane equation is: $(x_2-x_1)f_x(x_1,y_1,z_1)+(y_2-y_1)f_y(x_1,y_1,z_1)+(z_2-z_1)f_x(x_1,y_1,z_1)=0$ At point$(2,2,1)$ $(x-2)(4)+(y-2)(8)+(z-1)(24)=0$ $4x-8+8y-16+24z-24=0$ This implies, $4x+8y+24z=48$ or, $x+2y+6z=12$ (b) Formula to normal line equation is: $\dfrac{(x_2-x_1)}{f_x(x_1,y_1,z_1)}=\dfrac{(y_2-y_1)}{f_y(x_1,y_1,z_1)}=\dfrac{(z_2-z_1)}{f_x(x_1,y_1,z_1)}$ At point$(2,2,1)$ $\dfrac{(x-2)}{4}=\dfrac{(y-2)}{8}=\dfrac{(z-1)}{24}$ or, $(x-2)=\dfrac{(y-2)}{2}=\dfrac{(z-1)}{6}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.