Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 14 - Section 14.6 - Directional Derivatives and the Gradient Vector - 14.6 Exercise - Page 1007: 48

Answer

(a) $x-2y+2z=-1$ (b) $\dfrac{(x-3)}{-1}=\dfrac{(y-1)}{2}=\dfrac{(z+1)}{-2}$

Work Step by Step

(a) Formula to calculate tangent plane equation is: $(x_2-x_1)f_x(x_1,y_1,z_1)+(y_2-y_1)f_y(x_1,y_1,z_1)+(z_2-z_1)f_x(x_1,y_1,z_1)=0$ At point$(3,1,-1)$ $(x-3)(-1)+(y-1)(2)-(z+1)(2)=0$ $-x+3+2y-2-2z-2=0$ This implies, $x-2y+2z=-1$ (b) Formula to normal line equation is: $\dfrac{(x_2-x_1)}{f_x(x_1,y_1,z_1)}=\dfrac{(y_2-y_1)}{f_y(x_1,y_1,z_1)}=\dfrac{(z_2-z_1)}{f_x(x_1,y_1,z_1)}$ At point$(3,1,-1)$ $\dfrac{(x-3)}{-1}=\dfrac{(y-1)}{2}=\dfrac{(z+1)}{-2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.