Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 13 - Section 13.2 - Derivatives and Integrals of Vector Functions - 13.2 Exercise - Page 903: 41

Answer

$\tan ti+\frac{1}{8}(t^2+1)^4j+(\dfrac{1}{3}t^3 \ln t-\dfrac{1}{9}t^3)k+C$

Work Step by Step

Given: $\int (\sec^2 ti+t(t^2+1)^3j+t^2 \ln t k)dt$ In order to evaluate the integral we will have to integrate each component of the function individually. Let $I=\int (\sec^2 ti+t(t^2+1)^3j+t^2 \ln t k)dt$ Thus, $I=\int \sec^2 tdti+\int t(t^2+1)^3dtj+\int t^2 \ln t dtk$ $I=\tan ti+ Aj+Bk$ ... (1) Here, $A=\int t(t^2+1)^3dt$ and $B=\int t^2 \ln t dt$ Consider $A=\int t(t^2+1)^3dt$ suppose $p=t^2+1 \implies dp=2tdt$ Thus, $A=\frac{1}{2}\int p^3dp=\frac{1}{8}p^4=\frac{1}{8}(t^2+1)^4$ Now, consider $B=\int t^2 \ln t dt=\ln t (1/3t^3)-\int (1/3t^3) \dfrac{1}{t} dt=\dfrac{1}{3}t^3 \ln t-\dfrac{1}{9}t^3$ Plug in the values of A and B in equation (1) and we get $I=\tan ti+\frac{1}{8}(t^2+1)^4j+(\dfrac{1}{3}t^3 \ln t-\dfrac{1}{9}t^3)k+C$ Here, C is the constant of integration.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.