Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 13 - Section 13.2 - Derivatives and Integrals of Vector Functions - 13.2 Exercise - Page 903: 38

Answer

$\int_1^4\langle2t^{\frac{3}{2}},0,(t+1)\sqrt{t}\rangle dt=\langle\frac{124}{5},0,\frac{256}{15}\rangle$.

Work Step by Step

$\int_1^4\langle2t^{\frac{3}{2}},0,(t+1)\sqrt{t}\rangle dt=\int_1^42t^{\frac{3}{2}}dt+\int_1^40dt+\int_1^4t^\frac{3}{2}+t^{\frac{1}{2}}dt=(\frac{4}{5}t^\frac{5}{2})\big|_1^4+(0)\big|_1^4+(\frac{2}{5}t^\frac{5}{2}+\frac{2}{3}t^\frac{3}{2})\big|_1^4=\langle\frac{124}{5},0,\frac{256}{15}\rangle$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.