Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 11 - Section 11.1 - Sequences - 11.1 Exercises - Page 737: 98

Answer

See explanation

Work Step by Step

Given ℇ>0, $\because\lim_{n\rightarrow\infty}{a_{2n}}=L,\ \therefore\exists\ N_1\ s.t.\forall n\geq N_1,\ \left|a_{2n}-L\right|<ℇ.$ $\because\lim_{n\rightarrow\infty}{a_{2n+1}}=L,\ \therefore\exists\ N_2\ s.t.\forall n\geq N_2,\left|a_{2n+1}-L\right|<ℇ.$ Now, for such $N_1,N_2$, let $N=\max{\left(N_1,N_2\right)}$. Then, we have $\exists\ N\ s.t.\forall n\geq N,\ \left|a_{2n}-L\right|<ℇ.$ $\exists\ N\ s.t.\forall n\geq N,\left|a_{2n+1}-L\right|<ℇ.$ Consider an arbitrary $m\geq N$. Depending on whether m is even or odd: $If\ m=2k\ for\ some\ k\geq N,then\ \left|a_m-L\right|=\left|a_{2k}-L\right|<ℇ.$ $If\ m=2k+1\ for\ some\ k\geq N,then\ \left|a_m-L\right|=\left|a_{2k+1}-L\right|<ℇ.$ Combine the above description, we obtain: $\forall\ m\geq N,\ \left|a_m-L\right|<ℇ.$ This directly implies that $\forall\ m\geq N,\left|a_m-L\right|<ℇ.$ Therefore, by the definition of the limit, $\lim_{m\rightarrow\infty}{a_m}=L.$ Thus, we have shown that $\lim_{n\rightarrow\infty}{a_n}=L.$ Part 1: Even Terms While n=1, $a_2 - a_4 = 18/12-17/12=1/12>0$. Let $a_{2n} - a_{2n+2} > 0$ established for n = k. Then, $\because a_{2n} > a_{2n+2} \ \therefore 2 + \frac{1}{1 + a_{2k}} < 2 + \frac{1}{1 + a_{2k+2}} $ $\Rightarrow a_{2(k+1)} - a_{2(k+1)+2} = a_{2k+2} - a_{2k+4} = [1 + \frac{1}{2 + \frac{1}{1 + a_{2k}}}] - [1 + \frac{1}{2 + \frac{1}{1 + a_{2k+2}}}] > 0$ By M.I., $a_{2n} - a_{2n+2} > 0$ establishes, i.e., $\{a_{2n} \}$ is decreasing. While n =1, $a_2 = \frac{3}{2} > 1$. Let $a_{2n} > 1$ established for n = k. Then $a_{2(k+1)} = a_{2k+2} = 1 + \frac{1}{2 + \frac{1}{1 + a_{2k}}} > 1$ By M.I., $\{ a_{2n} \}$ has a lower bound with 1. Part 2: Odd Terms While n=1, $a_3 - a_1 = \frac{2}{5} > 0$. Let $a_{2n+1} - a_{2n-1} > 0$ established for n = k. Then, $a_{2(k+1)+1} - a_{2(k+1)-1} = a_{2k+3} - a_{2k+1} = [1 + \frac{1}{2 + \frac{1}{1 + a_{2k+1}}}] - [1 + \frac{1}{2 + \frac{1}{1 + a_{2k-1}}}] > 0$ By M.I., $a_{2n+1} - a_{2n-1} > 0$ establishes, i.e., $\{a_{2n - 1} \}$ is increasing. While n =1, $a_1 = 1 < 2$. Let $a_{2n-1} < 2$ established for n = k. Then $a_{2(k+1)-1} = a_{2k+1} = 1 + \frac{1}{2 + \frac{1}{1 + a_{2k-1}}} < 2$ $(Consider \ that \ 0 < 1 - \frac{1}{1 + a_{2k-1}} = \frac{1-\frac{1}{1 + a_{2k-1}}}{2+\frac{1}{1 + a_{2k-1}}} < 1)$ By M.I., $\{ a_{2n-1} \}$ has a upper bound with 2. Part 3: Find the limit of $\{ a_{2n} \}$ and $\{ a_{2n-1} \}$ By the Monotomic Sequence Theorem, we suppose x belonging to R s.t. $\lim_{n\rightarrow\infty}{a_{2n}=x}$ Then $\lim_{n\rightarrow\infty}{a_{2n+2}=x} = 1 + \frac{1}{2 + \frac{1}{1 + a_{2n}}}$. $\Rightarrow x = 1 + \frac{1}{2 + \frac{1}{1 + x}}$ $\Rightarrow x = \pm \sqrt{2}$ (Choose the positive one) Similarly, we do the same thing for $\{ a_{2n-1} \}$ and we will get $\lim_{n\rightarrow\infty}{a_{2n-1}= \sqrt{2}}$ Therefore, by the result of part (a), $\because \lim_{n\rightarrow\infty}{a_{2n} = \lim_{n\rightarrow\infty}{a_{2n-1} = \sqrt{2}}} \ \therefore \lim_{n\rightarrow\infty}{a_n = \sqrt{2}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.