Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 10 - Section 10.4 - Areas and Lengths in Polar Coordinates - 10.4 Exercises - Page 702: 66

Answer

$-2$

Work Step by Step

Find $\frac{dy}{d\theta}$: $\frac{dy}{d\theta}=\frac{d}{d\theta}(r\sin\theta)=\frac{d}{d\theta}((\sin\theta+2\cos\theta)\sin\theta)$ $=\frac{d}{d\theta}(\sin\theta+2\cos\theta)\cdot \sin\theta+(\sin \theta+2\cos\theta)\frac{d}{d\theta}(\sin\theta)$ $=(\cos\theta-2\sin\theta)\sin\theta+(\sin\theta+2\cos\theta)\cos\theta$ $=\cos\theta\sin\theta-2\sin^2\theta+\cos\theta\sin\theta+2\cos^2\theta$ $=2\cos\theta\sin\theta-2(\cos^2\theta-\sin^2\theta)$ $=\sin2\theta-2\cos2\theta$ Find $\frac{dx}{d\theta}$: $\frac{dx}{d\theta}=\frac{d}{d\theta}(r\cos\theta)=\frac{d}{d\theta}((\sin\theta+2\cos\theta)\cos\theta)$ $=\frac{d}{d\theta}(\sin\theta+2\cos\theta)\cos\theta+(\sin\theta+2\cos\theta)\frac{d}{d\theta}(\cos\theta)$ $=(\cos\theta-2\sin\theta)\cos\theta+(\sin\theta+2\cos\theta)(-\sin\theta)$ $=(\cos^2\theta-\sin^2\theta)-2(2\sin\theta\cos\theta)$ $=\cos2\theta-2\sin2\theta$ Find the slope of the tangent line at $\theta=\pi/2$: $m=\frac{dy}{dx}|_{\theta=\pi/2}=\frac{dy/d\theta}{dx/d\theta}|_{\theta=\pi/2}=\frac{\sin\pi-2\cos\pi}{\cos\pi-2\sin\pi}=\frac{0-2(-1)}{-1-2\cdot0}=\frac{2}{-1}=-2$ Thus, the slope is $-2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.