Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 10 - Section 10.4 - Areas and Lengths in Polar Coordinates - 10.4 Exercises - Page 702: 65

Answer

$-\pi$

Work Step by Step

Find $dy/d\theta$: $\frac{dy}{d\theta}=\frac{d}{d\theta}(r\sin\theta)=\frac{d}{d\theta}(\frac{1}{\theta}\cdot \sin\theta)=\frac{d}{d\theta}(\frac{\sin \theta}{\theta})=\frac{\cos\theta\cdot \theta -\sin \theta\cdot 1}{\theta^2}=\frac{\theta\cos\theta-\sin\theta}{\theta^2}$ Find $dx/d\theta$: $\frac{dx}{d\theta}=\frac{d}{d\theta}(r\cos \theta)=\frac{d}{d\theta}(\frac{1}{\theta}\cdot \theta)=\frac{d}{d\theta}(\frac{\cos \theta}{\theta})=\frac{-\sin \theta\cdot \theta-\cos \theta\cdot \theta}{\theta^2}=-\frac{\theta\sin \theta+\cos \theta}{\theta^2}$ Find $\frac{dy}{dx}$: $\frac{dy}{dx}=\frac{dy/d\theta}{dx/d\theta}=\frac{\frac{\theta\cos\theta-\sin\theta}{\theta^2}}{-\frac{\theta\sin \theta+\cos \theta}{\theta^2}}=-\frac{\theta\cos \theta-\sin\theta}{\theta\sin \theta+\cos \theta}$ Find the slope of the tangent line at $\theta=\pi$: $m=\frac{dy}{dx}|_{\theta=\pi}=-\frac{\pi\cos \theta-\sin \theta}{\pi \sin \theta+\cos \theta}=-\frac{\pi(-1)-0}{\pi\cdot 0+(-1)}=-\pi$ Thus, the slope is $-\pi$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.