Answer
$\frac{dx}{dt}=1-\frac{1}{t}$
$\frac{dy}{dt}=2t+2t^{-3}$
$\frac{dy}{dx}=\frac{2t^4+2}{t^3-t^2}$
Work Step by Step
Find $dx/dt$:
$\frac{dx}{dt}=1-\frac{1}{t}$
Find $dy/dt$:
$\frac{dy}{dt}=2t+2t^{-3}$
Find $dy/dx$:
$\frac{dy}{dx}=\frac{dy/dt}{dx/dt}=\frac{2t+2t^{-3}}{1-\frac{1}{t}}=\frac{2t+2t^{-3}}{1-\frac{1}{t}}\times \frac{t^3}{t^3}=\frac{2t^4+2}{t^3-t^2}$