Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.6 - Rational Equations - Exercise Set - Page 463: 40

Answer

$\displaystyle \frac{x-3}{x(x+1)}$

Work Step by Step

Factor the denominators $x^{2}-x=x(x-1)$ $x^{2}-1=(x-1)(x+1)$ LCD = $x(x-1)(x+1)$ $\displaystyle \frac{x+3}{x^{2}-x}-\frac{8}{x^{2}-1}= \displaystyle \frac{x+3}{x(x-1)}\cdot\frac{x+1}{x+1}-\frac{8}{(x-1)(x+1)}\cdot\frac{x}{x}$ $= \displaystyle \frac{(x+3)(x+1)-8x}{x(x-1)(x+1)}$ $= \displaystyle \frac{x^{2}+4x+3-8x}{x(x-1)(x+1)}$ $= \displaystyle \frac{x^{2}-4x+3}{x(x-1)(x+1)}$ ... factors of $3$ whose sum is $-4$ ... are $-1$ and $-3$ $= \displaystyle \frac{(x-1)(x-3)}{x(x-1)(x+1)}\qquad$... cancel the common factor, $(x-1)$ = $\displaystyle \frac{x-3}{x(x+1)}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.