Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 8 - Radical Functions - Chapter Test - Page 671: 11

Answer

$ -6+3 \sqrt{5}+2 \sqrt{2}-\sqrt{10}$

Work Step by Step

Given \begin{equation} \frac{3-\sqrt{2}}{2+\sqrt{5}}. \end{equation} Rationalize the denominator and simplify. \begin{equation} \begin{aligned} \frac{3-\sqrt{2}}{2+\sqrt{5}}&=\frac{(3-\sqrt{2})}{(2+\sqrt{5})}\cdot \frac{(2-\sqrt{5})}{(2-\sqrt{5})}\\ &= \frac{3(2-\sqrt{5})-\sqrt{2}(2-\sqrt{5}) }{4-5}\\ & = \frac{6-3 \sqrt{5}-2 \sqrt{2}+\sqrt{10}}{-1}\\ &= -6+3 \sqrt{5}+2 \sqrt{2}-\sqrt{10}. \end{aligned} \end{equation} The simplified expression is \begin{equation} \frac{3-\sqrt{2}}{2+\sqrt{5}}= -6+3 \sqrt{5}+2 \sqrt{2}-\sqrt{10}. \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.