Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 8 - Radical Functions - Chapter Test - Page 671: 10

Answer

$ \frac{5\sqrt[3]{9m^2n}}{3n}$

Work Step by Step

Given \begin{equation} \frac{5 m}{\sqrt[3]{3 m n^2}}. \end{equation} Rationalize the denominator and simplify. \begin{equation} \begin{aligned} \frac{5 m}{\sqrt[3]{3 m n^2}}&=\frac{5 m}{\sqrt[3]{3 m n^2}}\cdot \frac{\sqrt[3]{3^2m^2n}}{\sqrt[3]{3^2m^2n}}\\ &= \frac{5m\sqrt[3]{3^2m^2n}}{\sqrt[3]{3^3m^3n^3}}\\ & = \frac{5m\sqrt[3]{3^2m^2n}}{3mn}\\ &= \frac{5\sqrt[3]{9m^2n}}{3n}. \end{aligned} \end{equation} The simplified expression is \begin{equation} \frac{5 m}{\sqrt[3]{3 m n^2}}= \frac{5\sqrt[3]{9m^2n}}{3n}. \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.