Answer
a) $27.8$ kg
b) $384.7$ kg
Work Step by Step
Given \begin{equation}
L(M)=0.330 \sqrt[3]{M}.
\end{equation} First solve for $M$ in term of $L$.
\begin{equation}
\begin{aligned}
0.330 \sqrt[3]{M}&=L\\
\sqrt[3]{M}&=\frac{L}{0.330 } \\
\left(\sqrt[3]{M}\right)^3& =\left( \frac{L}{0.330 } \right)^3\\
M& = \left( \frac{L}{0.330 } \right)^3.
\end{aligned}
\end{equation} a) Now, set $L= 1$ to find the body mass of the mammal.
\begin{equation}
\begin{aligned}
M& = \left( \frac{1}{0.330 } \right)^3\\
&=27.826.
\end{aligned}
\end{equation} The body mass of the mammal is about $27.8$ kg.
b) Set $L= 2.4$ to find the body mass of the mammal.
\begin{equation}
\begin{aligned}
M& = \left( \frac{2.4}{0.330 } \right)^3\\
&=384.673.
\end{aligned}
\end{equation} The body mass of the mammal is about $384.7$ kg.