Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 6 - Logarithmic Functions - 6.5 Solving Exponential Equations - 6.5 Exercises: 68

Answer

$f^{-1}(x) = \ln_ (\frac{x}{4.2})$

Work Step by Step

$f(x) = 4.2e^{x}$ Let $f(x) = y$ $y = 4.2e^{x}$ Swap the variables $x$ and $y$ and then solve for $y$ to find the inverse: $x = 4.2e^{y}$ $(e)^{y} = \frac{x}{4.2}$ $y = \ln (\frac{x}{4.2})$ $y = \ln_ (\frac{x}{4.2})$ $f^{-1}(x) = \ln_ (\frac{x}{4.2}).$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.