Answer
$2\sqrt{2}\text{ }cm \text{ OR approximately }2.83\text{ }cm$
Work Step by Step
Using the given lengths of the triangle, then the semi-perimeter, $s,$ given by $
s=\dfrac{1}{2}(a+b+c)
,$ is equal to
\begin{array}{l}\require{cancel}
s=\dfrac{1}{2}(2+3+3)
\\
s=\dfrac{1}{2}(8)
\\
s=4
.\end{array}
Using $
A=\sqrt{s(s-a)(s-b)(s-c)}
$ or the Heron's Formula, then the area of the triangle, $A,$ is
\begin{array}{l}\require{cancel}
A=\sqrt{4(4-2)(4-3)(4-3)}
\\
A=\sqrt{4(2)(1)(1)}
\\
A=\sqrt{4\cdot2}
\\
A=\sqrt{2^2\cdot2}
\\
A=2\sqrt{2}
\\\text{OR}\\
A\approx2.83
.\end{array}
Hence, the area, $A,$ is $
2\sqrt{2}\text{ }cm \text{ OR approximately }2.83\text{ }cm
.$