Answer
$2\pi\sqrt{\dfrac{43}{384}} \text{ seconds OR approximately }2.10\text{ seconds}$
Work Step by Step
Since $12$ inches is equal to $1$ foot, then $43$ inches is equivalent to
\begin{array}{l}\require{cancel}
43\text{ }in\cdot\dfrac{1\text{ }ft}{12\text{ }in}
\\=
43\text{ }\cancel{in}\cdot\dfrac{1\text{ }ft}{12\text{ }\cancel{in}}
\\=
\dfrac{43}{12}\text{ } ft
.\end{array}
Substituting $
l=\dfrac{43}{12}
$ in the given equation, $
P=2\pi\sqrt{\dfrac{l}{32}}
,$ results to
\begin{array}{l}\require{cancel}
P=2\pi\sqrt{\dfrac{43/12}{32}}
\\
P=2\pi\sqrt{\dfrac{43}{12}\div32}
\\
P=2\pi\sqrt{\dfrac{43}{12}\cdot\dfrac{1}{32}}
\\
P=2\pi\sqrt{\dfrac{43}{384}}
\\\text{OR}\\
P\approx2.10
.\end{array}
Hence, the period, $P,$ is $
2\pi\sqrt{\dfrac{43}{384}} \text{ seconds OR approximately }2.10\text{ seconds}
.$