#### Answer

$-16(t+5)(t-11)$

#### Work Step by Step

$-16t^{2}+96t+880$
Factor out the GCF, $-16$.
$-16(t^{2}-6t-55)$
In this trinomial, $(t^{2}-6t-55),$ $a=1$, $b=-6$ and $c=-55$.
Splitting the middle term $b$ into two numbers $-11$ and $5 $, whose product is $-55$ $(a \times c)$ and whose sum is $(b)$, $-6$.
$-16(t^{2}-11t+5t-55)$
Factor out by grouping.
$-16((t^{2}-11t)+(5t-55))$
$-16(t(t-11)+5(t-11))$
$-16(t+5)(t-11)$