Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Chapter R-8 - Cumulative Review Exercises - Page 579: 31

Answer

$\sqrt{7}+\sqrt{5}$

Work Step by Step

Multiplying by the conjugate of the denominator, the given expression, $ \dfrac{2}{\sqrt{7}-\sqrt{5}} ,$ is equivalent to \begin{align*}\require{cancel} & \dfrac{2}{\sqrt{7}-\sqrt{5}}\cdot\dfrac{\sqrt{7}+\sqrt{5}}{\sqrt{7}+\sqrt{5}} \\\\&= \dfrac{2(\sqrt{7}+\sqrt{5})}{\left(\sqrt{7}\right)^2-\left(\sqrt{5}\right)^2} &(\text{use }(a+b)(a-b)=a^2-b^2) \\\\&= \dfrac{2(\sqrt{7}+\sqrt{5})}{7-5} \\\\&= \dfrac{\cancel2(\sqrt{7}+\sqrt{5})}{\cancel2} \\\\&= \sqrt{7}+\sqrt{5} .\end{align*} Hence, the expression $ \dfrac{2}{\sqrt{7}-\sqrt{5}} $ simplifies to $ \sqrt{7}+\sqrt{5} $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.