Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Chapter R-8 - Cumulative Review Exercises - Page 579: 20

Answer

$\dfrac{x^{8}}{y^4}$

Work Step by Step

Using the laws of exponents, the given expression, $ \left(\dfrac{x^{-3}y^2}{x^5y^{-2}}\right)^{-1} $, is equivalent to \begin{align*}\require{cancel} & \left(x^{-3-5}y^{2-(-2)}\right)^{-1} &(\text{use }\dfrac{x^m}{x^n}=x^{m-n}) \\\\&= \left(x^{-8}y^{2+2}\right)^{-1} \\\\&= \left(x^{-8}y^{4}\right)^{-1} \\\\&= x^{-8(-1)}y^{4(-1)} &(\text{use }\left(x^m\right)^n=x^{mn}) \\\\&= x^{8}y^{-4} \\\\&= x^{8}\cdot\dfrac{1}{y^4} &(\text{use }a^{-m}=\dfrac{1}{a^m}) \\\\&= \dfrac{x^{8}}{y^4} .\end{align*} Hence, the expression $\left(\dfrac{x^{-3}y^2}{x^5y^{-2}}\right)^{-1} $ simplifies to $ \dfrac{x^{8}}{y^4} $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.