Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 7 - Section 7.4 - Adding and Subtracting Radical Expressions - 7.4 Exercises: 41

Answer

$4x\sqrt[3]{x}+6x\sqrt[4]{x}$

Work Step by Step

$\bf{\text{Solution Outline:}}$ To simplify the given radical expression, $ 2\sqrt[3]{8x^4}+3\sqrt[4]{16x^5} ,$ simplify first each term by expressing the radicand as a factor that is a perfect power of the index. Then, extract the root. $\bf{\text{Solution Details:}}$ Expressing the radicand as an expression that contains a factor that is a perfect power of the index results to \begin{array}{l}\require{cancel} 2\sqrt[3]{8x^3\cdot x}+3\sqrt[4]{16x^4\cdot x} \\\\= 2\sqrt[3]{(2x)^3\cdot x}+3\sqrt[4]{(2x)^4\cdot x} .\end{array} Extracting the roots of the factor that is a perfect power of the index results to \begin{array}{l}\require{cancel} 2(2x)\sqrt[3]{x}+3(2x)\sqrt[4]{x} \\\\= 4x\sqrt[3]{x}+6x\sqrt[4]{x} .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.