#### Answer

$9\sqrt{2} \text{ units}$

#### Work Step by Step

$\bf{\text{Solution Outline:}}$
Use the Distance Formula to find the distance between the given points $\left(
-6,5
\right)$ and $\left(
3,-4
\right)$.
$\bf{\text{Solution Details:}}$
With the given points, then $x_1=
-6
,$ $x_2=
3
,$ $y_1=
5
,$ and $y_2=
-4
.$ Using the Distance Formula which is given by $d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}
,$ then
\begin{array}{l}\require{cancel}
d=\sqrt{(-6-3)^2+(5-(-4))^2}
\\\\
d=\sqrt{(-6-3)^2+(5+4)^2}
\\\\
d=\sqrt{(-9)^2+(9)^2}
\\\\
d=\sqrt{81+81}
\\\\
d=\sqrt{162}
\\\\
d=\sqrt{81\cdot2}
\\\\
d=\sqrt{(9)^2\cdot2}
\\\\
d=9\sqrt{2}
.\end{array}
Hence, the distance is $
9\sqrt{2} \text{ units}
.$