#### Answer

$Q(3.5,2.25)$

#### Work Step by Step

To find the midpoint between points $(x_1,y_1)$ and $(x_2,y_2)$, we use the midpoint formula:
$\displaystyle Midpoint=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})$
We have the two points, $P(2.5,1.75)$ and $Q(x,y)$. The midpoint is $M(3,2)$. Thus we have:
$\displaystyle Midpoint=(\frac{2.5+x}{2},\ \frac{1.75+y}{2})=(3,2)$
We solve for $x$:
$\frac{2.5+x}{2}=3$
$2.5+x=6$
$x=3.5$
And for $y$:
$\frac{1.75+y}{2}=2$
$1.75+y=4$
$y=4-1.75$
$y=2.25$
Therefore, the point Q is: $(3.5,2.25)$