Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 1 - Section 1.5 - Linear Inequalities in One Variable - 1.5 Exercises - Page 101: 61


$\left[ 3,\infty \right)$

Work Step by Step

$\bf{\text{Solution Outline:}}$ Use the concepts of inequalities to translate the given description, \begin{array}{l}\require{cancel}\text{ when $1$ is added to twice a number, the result is greater than or equal to 7 },\end{array} into symbols. Then solve using the properties of inequality. Express the solution set in interval notation. $\bf{\text{Solution Details:}}$ In symbols, the given description translates to \begin{array}{l}\require{cancel} 2x+1\ge7 .\end{array} Using the properties of inequality, the inequality above is equivalent to \begin{array}{l}\require{cancel} 2x+1\ge7 \\\\ 2x\ge7-1 \\\\ 2x\ge6 \\\\ x\ge\dfrac{6}{2} \\\\ x\ge3 .\end{array} In interval notation, the solution set is $ \left[ 3,\infty \right) .$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.