Elementary Linear Algebra 7th Edition

Published by Cengage Learning
ISBN 10: 1-13311-087-8
ISBN 13: 978-1-13311-087-3

Chapter 5 - Inner Product Spaces - 5.3 Orthonormal Bases: Gram-Schmidt Process - 5.3 Exercises - Page 257: 32

Answer

$B'=\{(1,0,0),(0,\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}),(0,\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}})\}$ is orthonormal basis for $R^3$.

Work Step by Step

Let $B=\{ v_1=(1,0,0),v_2=(1,1,1), v_3=(1,1,-1) \}$. Applying the Gram-Schmidt orthonormalization process produces $$w_1=v_1=(1,0,0)$$ $$w_2=v_2- \frac{v_2\cdot w_1}{w_1\cdot w_1}w_1=(1,1,1)- (1,0,0)=(0,1,1)$$ $$w_3=v_3- \frac{v_3\cdot w_1}{w_1\cdot w_1}w_1- \frac{v_3\cdot w_2}{w_2\cdot w_2}w_2\\=(1,1,-1)-(1,0,0)-0(0,1,1)=(0,1,-1).$$ Normalizing $w_1$, $w_2$ and $w_3$ produces the orthonormal set $$u_1=\frac{w_1}{\|w_1\|}=(1,0,0) $$ $$u_2=\frac{w_2}{\|w_2\|}=\frac{1}{2}(0,1,1)=(0,\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$$ $$u_3=\frac{w_3}{\|w_3\|}=\frac{1}{2}(0,1,-1)=(0,\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}})$$ Hence, $B'=\{(1,0,0),(0,\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}),(0,\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}})\}$ is orthonormal basis for $R^3$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.