Elementary Linear Algebra 7th Edition

Published by Cengage Learning
ISBN 10: 1-13311-087-8
ISBN 13: 978-1-13311-087-3

Chapter 5 - Inner Product Spaces - 5.2 Inner Product Spaces - 5.2 Exercises - Page 246: 61

Answer

See the explanation below.

Work Step by Step

Let $f(x)=\sin x, \quad g(x)=\cos x.$, $\langle f, g\rangle=\int_{0}^{\frac{\pi}{4}}f(x)g(x) d x$, we have $\langle f, g\rangle=\int_{0}^{\frac{\pi}{4}}\sin x\cos x d x=\frac{1}{2}\left[\sin^{2}x\right]_{0}^{\frac{\pi}{4}}=\frac{1}{4},$ $\langle f, f\rangle=\int_{0}^{\frac{\pi}{4}}\sin^2 x d x=\frac{1}{2}\int_{0}^{\frac{\pi}{4}}(1-\cos 2x) d x=\frac{1}{2}\left[x-\frac{1}{2}\sin 2x\right]_{0}^{\frac{\pi}{4}}=\frac{1}{2}(\frac{\pi}{4}-\frac{1}{2}),$ $\langle g, g\rangle=\int_{0}^{\frac{\pi}{4}}\cos^2 x d x=\frac{1}{2}\int_{0}^{\frac{\pi}{4}}(1+\cos 2x) d x=\frac{1}{2}\left[x+\frac{1}{2}\sin 2x\right]_{0}^{\frac{\pi}{4}}=\frac{1}{2}(\frac{\pi}{4}+\frac{1}{2}),$ \begin{aligned}\langle f+g, f+g\rangle &=\int_{0}^{\frac{\pi}{4}}(\sin x +\cos x)^2d x\\ &=\int_{0}^{\frac{\pi}{4}}\left(1+\sin 2x\right) d x \\ &=\left[x-\frac{1}{2}\cos 2x\right]_{0}^{\frac{\pi}{4}} \\ &=\frac{\pi}{4}+\frac{1}{2}\end{aligned} Since for any $f$, we have $\| f \| =\sqrt{\langle f, f\rangle} $, then: (a) Cauchy-Schwarz Inequality: $|\langle f,g \rangle|=\frac{1}{4}\leq\| f \|\| g \|=\frac{1}{2}\sqrt{\frac{\pi^2}{16}-\frac{1}{4}}$ (b) The triangle inequality: $\| f+g \| =\sqrt{\frac{\pi}{4}+\frac{1}{2}}\leq\| f \|+\| g \|=\frac{1}{\sqrt 2}{\sqrt{\frac{\pi}{4}-\frac{1}{2}}}+\frac{1}{\sqrt 2}{\sqrt{\frac{\pi}{4}+\frac{1}{2}}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.