Elementary Linear Algebra 7th Edition

Published by Cengage Learning
ISBN 10: 1-13311-087-8
ISBN 13: 978-1-13311-087-3

Chapter 4 - Vector Spaces - 4.7 Coordinates and Change of Basis - 4.7 Exercises - Page 210: 26


$$ P^{-1}=\left[ \begin {array}{cccc} -3&-2\\ \frac{ 1}{2}&\frac{3}{2} \end {array} \right]. $$

Work Step by Step

Given $$ B=\{(-2,1),(3,2)\}, B^{\prime}=\{(1,2),(-1,0)\}. $$ To find the transition matrix from $B$ to $B^{\prime}$, we form the matrix $$ \left[B^{\prime} B\right]=\left[ \begin {array}{cccc} 1&2&-2&1\\ -1&0&3&2 \end {array} \right] .$$ Using Gauss-Jordan elimination to obtain the transition matrix $$ \left[\begin{array}{ll}{I_{2}} & {P^{-1}}\end{array}\right]=\left[ \begin {array}{cccc} 1&0&-3&-2\\ 0&1&\frac{ 1}{2}&\frac{3}{2} \end {array} \right] .$$ So, we have $$ P^{-1}=\left[ \begin {array}{cccc} -3&-2\\ \frac{ 1}{2}&\frac{3}{2} \end {array} \right]. $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.