Elementary Linear Algebra 7th Edition

Published by Cengage Learning
ISBN 10: 1-13311-087-8
ISBN 13: 978-1-13311-087-3

Chapter 3 - Determinants - 3.3 Properties of Determinants - 3.3 Exercises - Page 125: 28

Answer

$$|A|=-2, \quad \left|A^{-1}\right|=-\frac{1}{2}.$$

Work Step by Step

Since $$A=\left[\begin{array}{rrr} 1&0&1\\ 2&-1&2 \\ 1&-2&3 \end{array}\right],$$ then one can calculate its inverse , that is, $$A^{-1}= \left[\begin{array}{rrr} - \frac{1}{2}&1&- \frac{1}{2}\\ 2&-1&0 \\ \frac{3}{2}&-1&\frac{1}{2} \end{array}\right].$$ Now, we have $$|A|=-2, \quad \left|A^{-1}\right|=-\frac{1}{2}.$$ Hence, we verify that $$\left|A^{-1}\right|=\frac{1}{|A|}.$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.