#### Answer

$t\lt0 \text{ or } t\gt0$

#### Work Step by Step

$\bf{\text{Solution Outline:}}$
Solve the given inequality, $
|t|\gt0
,$ using the definition of a greater than absolute value inequality. Then graph the solution set.
In the graph, a hollowed dot is used for $\lt$ or $\gt.$ A solid dot is used for $\le$ or $\ge.$
$\bf{\text{Solution Details:}}$
Since for any $c\gt0$, $|x|\gt c$ implies $x\gt c \text{ or } x\lt-c$ (which is equivalent to $|x|\ge c$ implies $x\ge c \text{ or } x\le-c$), the given inequality is equivalent to
\begin{array}{l}\require{cancel}
t\gt0
\\\\\text{OR}\\\\
t\lt0
.\end{array}
Hence, the solution set is $
t\lt0 \text{ or } t\gt0
.$